A Flexible, GPU - Powered Fast Multipole Method for Realistic Biomolecular Simulations in Gromacs
نویسندگان
چکیده
منابع مشابه
RPYFMM: Parallel Adaptive Fast Multipole Method for Rotne-Prager-Yamakawa Tensor in Biomolecular Hydrodynamics Simulations
RPYFMM is a software package for the efficient evaluation of the potential field governed by the Rotne-Prager-Yamakawa (RPY) tensor interactions in biomolecular hydrodynamics simulations. In our algorithm, the RPY tensor is decomposed as a linear combination of four Laplace interactions, each of which is evaluated using the adaptive fast multipole method (FMM) [1] where the exponential expansio...
متن کاملBest bang for your buck: GPU nodes for GROMACS biomolecular simulations
The molecular dynamics simulation package GROMACS runs efficiently on a wide variety of hardware from commodity workstations to high performance computing clusters. Hardware features are well-exploited with a combination of single instruction multiple data, multithreading, and message passing interface (MPI)-based single program multiple data/multiple program multiple data parallelism while gra...
متن کاملGROMACS: Fast, flexible, and free
This article describes the software suite GROMACS (Groningen MAchine for Chemical Simulation) that was developed at the University of Groningen, The Netherlands, in the early 1990s. The software, written in ANSI C, originates from a parallel hardware project, and is well suited for parallelization on processor clusters. By careful optimization of neighbor searching and of inner loop performance...
متن کاملGPU-accelerated indirect boundary element method for voxel model analyses with fast multipole method
An indirect boundary element method (BEM) that uses the fast multipole method (FMM) was accelerated using graphics processing units (GPUs) to reduce the time required to calculate a three-dimensional electrostatic field. The BEM is designed to handle cubic voxel models and is specialized to consider square voxel walls as boundary surface elements. The FMM handles the interactions among the surf...
متن کاملA fast multipole method for stellar dynamics
The approximate computation of all gravitational forces between N interacting particles via the fast multipole method (FMM) can be made as accurate as direct summation, but requires less thanO (N) operations. FMM groups particles into spatially bounded cells and uses cell-cell interactions to approximate the force at any position within the sink cell by a Taylor expansion obtained from the mult...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2017
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2016.11.2402